中海における気象変化に伴う流れと貧酸素水塊の挙動

福岡捷二 1・黒川岳司 2・日比野忠史 3・鈴木 篤 4・中村 剛 5・上原 浩 6

1 フェロー 工博, Ph.D 広島大学教授 工学部第四地域環境工学講座 (〒739-8527 広島県東広島市鏡山 1-4-1)
2 学生員 工修 広島大学大学院 工学研究科環境工学専攻博士課程後期 (〒739-8527 広島県東広島市鏡山 1-4-1)
3 正会員 工博 運輸省港湾技術研究所主任研究官 海洋環境部 (〒239-0826 神奈川県横須賀市長瀬 3-1-1)
4 正会員 工修 建設省中国地方建設局出雲工事事務所事務所長 (〒693-0023 島根県出雲市塩沢町有原 5-1)
5 正会員 工修 清水建設（株）北陸支店土木部 (〒920-0934 石川県金沢市宝町 14-11)
6 学生員 広島大学大学院 工学研究科環境工学専攻博士課程前期 (〒739-8527 広島県東広島市鏡山 1-4-1)

水汽滑では強固な密度躍層が形成され、底層水が貪酸素化しやすい。貪酸素水塊の消長は気象や流れに密接に
関係している。そこで本研究では、代表的な気象 happen, 流れ、水際状況に関する詳細な現地観
測を行い、吹送流や気圧変化に伴う流れの特徴を整理し、それらが貪酸素水塊の時間的、空間的な分布特性に
どのように影響を与えるかを検討し、以下の事項を明らかにした。①貪酸素状態の程度は外海水の流入や風による
上下層の混合によって緩和されるが、低気圧接近に伴う外海水流入が最も大きな影響を与える。②気象平穏時に
は、米子湾奥部では半島や島の影響で潮全体とは異なる界面振動が生じ、貪酸素水塊はこれに伴う流れによって
移動する。③湾奥における水中でのデトリタスの分解による酸素消費量は底泥による消費量と同程度である。

Key Words : brackish lake, Lake Nakaumi, anoxic water mass, dissolved oxygen, pycnocline,
wind-driven current, atmospheric pressure

1. はじめに

我が国には汽水湖が多く、それらの汽水湖は様々な
人間活動の場となっている。汽水湖は閉鎖性が強いた
め水の滞留時間が長く、人間活動による水質の劣化が
進みやすいという問題を抱えている。水質保全対策と
して様々な方策が講じられているが、効果をあげるに
は至っていない。これは、汽水湖の水環境が湖沼など
の海洋学的要因、洪水などの水文学的要因、さらに気
圧や風の変化などの気象学的要因によって特徴付けら
れ、流れや水質分布の時間的、空間的変動が激しいた
めに、水環境の総合的な把握が困難なことが一因とな
っている。

本研究が対象とする中海は我が国の代表的な汽水湖
である。本研究では上述したような外力条件を調べ、水
質の劣化をもたらす要因を究明しようとするものであ
るが、中海でみられる外力条件～流れ～水質の関係は、
他の汽水湖でも共通の現象として捉えることができる
部分が多い。したがって、本研究は汽水湖が一般に持
つ流動、水質場の特徴を検討するものとして位置付け
られると考えられる。

これまで、中海においては学術研究や種々の計画に
伴う調査の対象として、現地観測や数値シュミュレーシ
ョン等により湖内の流動、水質の検討が行われてきた。
しかし、湖内で起こっている様々な物理、化学象現
明を説明できる段階には至っていない。

著者らの研究では、中海の流れ場を、天文潮や気圧変化に
伴う海水位変動に対する湖水位の応答性から検討し、
中海の流れ場は、中海が連結系水域であることによ
って特徴付けられており、気象変化に強く影響を受けて
いることを明らかにしている。また、中海では局所的
に環流が発生するなど複雑な流況も有していることか
ら、より詳細に流れ場を捉えるために、物質輸送の
過程を追跡することができるトラックポイントシステ
ムを開発し、その有効性を確認しているのだろう。

本研究の目的は、中海の流れ場に影響を与える気象
条件を明らかにし、流れ場の特徴と水質環境との関係
を明確にすることができる流れ場に影響を与える気象
条件としては、連結水域間の水位差を生じさせて湖に
流入口を起こさせる気圧変化と、吹送流を起こす風場
について検討する。流れ場と水質環境との関係につい
ては、DO に着目し、貪酸素水塊の形成・消滅過程を
含む時間的、空間的な分布に、流れ場がどのように作
用しているか検討する。そのために、トラックポイン
トシステムやADCPなどの各種計測機器を用いて、種々の気象条件における流れ、水質の詳細な現地観測を行っている。

本論文は、上述の目的を達成するために、気象～流れ場～水質環境の関係を、以下の順序で検討を進めていく。図-1にフローを示す。①流れ場は気象変化に支配されていることから、中海で観測する気象と風の組合せを分類化し、流動を起こす外力条件を明確にする。②それらの気象変化（外力条件）によって生じる吹送流や水路間の水位差に起因する流出量といった湖内流動を総合的に検討する。③最後に、水質環境と流れ場の関係を、食酸素水塊の移動やDO消費速度など物理的、生物化学的に検討する。

2. 中海の地形的特徴と現地観測の概要

(1) 中海の地形と水質環境の特徴

中海は、図-2(a)に示すように大橋川から志賀湖湖水（海水の1/10程度の塩分をもつ）が流入し、中浦水門から日本海（美保湾）の海水が流入する閉鎖性の水体湖である。水面積は86.2 km²でわが国の海水湖としては2番目に大きい。南東部に存在する米子湾は細長い海岸、特に閉鎖性が高い。湖底形状は、中浦水門から米子湾にかけて谷地形が形成され、数箇所のくぼみも有している。この谷地形を除けば、大橋川方向から日本海（美保湾）の海水が流入する閉鎖性の水体湖である。水面積は86.2 km²でわが国の海水湖としては2番目に大きい。南東部に存在する米子湾は細長い海岸、特に閉鎖性が高い。湖底形状は、中浦水門から米子湾にかけて谷地形が形成され、数箇所のくぼみも有している。この谷地形を除けば、大橋川方向

図-1 中海における気象～流れ場～水質環境の関係と本論文における検討のフロー

図-2 中海の水深分布と観測点

図-3 水温、塩分、密度、DOの鉛直分布（St.8, 1996/11/29 21:00）
表-1 集中観測（1996/11/29-11/30, 1997/10/3-10/4）の内容

<table>
<thead>
<tr>
<th>観測項目</th>
<th>観測点</th>
<th>調査層</th>
<th>頻度</th>
<th>使用機器</th>
</tr>
</thead>
<tbody>
<tr>
<td>流入・流出、断面流量</td>
<td>Line A,B,D,E,F,G*</td>
<td>0.25m</td>
<td>2 時間ビッチで</td>
<td>ADOP（Line D 以外）</td>
</tr>
<tr>
<td></td>
<td></td>
<td>まで</td>
<td>13 回実施</td>
<td>直接式流速・流向計（Line D）</td>
</tr>
<tr>
<td>水温・塩分</td>
<td>Line A,B,C,D,E,F,G, StM* ,F,C,B,C,Y*</td>
<td>水面下 0.0m から湖底上</td>
<td>2 時間ビッチで</td>
<td>STD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.0m まで 0.5m 毎</td>
<td>13 回実施</td>
<td></td>
</tr>
<tr>
<td>DO</td>
<td>St.1,2,3,4,5,6,7,8,9,10,11,12,13,M* ,F,C,B,C,Y*</td>
<td>水面下 0.5m, 1m および以上</td>
<td>2 時間ビッチで</td>
<td>DO センサー</td>
</tr>
<tr>
<td></td>
<td></td>
<td>深度上 1.0m まで 1m 毎</td>
<td>13 回実施</td>
<td></td>
</tr>
<tr>
<td>濁度</td>
<td>St.8,9,M*,F,C,T,10,B,C,Y*</td>
<td>水面下 0.5m から湖底上</td>
<td>2 時間ビッチで</td>
<td>粒度計</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5m まで 0.5m 毎</td>
<td>13 回実施</td>
<td></td>
</tr>
<tr>
<td>水温・塩分</td>
<td>Line A,B,C,D,E,F,G, StM* ,F,C,B,C,Y*</td>
<td>水面下 1m（上層）</td>
<td>6 時間ビッチで</td>
<td>バンドーン採水器で採水し、</td>
</tr>
<tr>
<td></td>
<td></td>
<td>湖底上 1m, 0.5m（下層）</td>
<td>4 回実施</td>
<td>公定法で分析</td>
</tr>
<tr>
<td>水塊の移動</td>
<td>Line B 付近, Line C 付近</td>
<td>跡の上層, 下層</td>
<td>1 昼夜連続</td>
<td>トラックポイントシステム</td>
</tr>
</tbody>
</table>

注）*は1996/11/29-11/30のみ、*は1997/10/3-10/4のみでの観測点を示す

図-4 境水道、中海湖心、彦名干拓地沖（StM付近）
の下層（湖底上 1m）におけるDO鰾和度の経月変化
（島根大学の観測結果 を用いており、1976～93 年の18年間の各月別に観測された測定値を平均している）

図-5 トラックポイントシステム

に向って勾配約 1/5000 で浅くなっており、湖心での水深は約 6.5m である。

図-3 は、1996/11/29 に観測した米子湾中央部（St.8）
における水温、塩分、密度およびDOの鉛直分布である。
中海では、このような密度躍層が、ほぼ全域で年間を通じて水深 2～6m 付近に存在し、安定した成層構造を有している。その安定度は夏季に高く、冬季に低くなる季節的な変動傾向を認められている。また、
密度躍層は上下層間の物質輸送を阻害するため、下層部はDOが供給されにくく、鉱酸素化する傾向にある。
図-4 は境水道、中海湖心、彦名干拓地沖（StM付近）
それぞれの下層（湖底上 1m）におけるDO鰾和度の
経月変化を示している。中海と外海を直接する境水
道では、下層においてもDOは年間を通じて変動が小さく鰾和状態に近い。これに対し、湖内は鉱酸素化しやす
い傾向があり、特に米子湾内は顕著で、米子湾の汚
海水化が同様する。季節的には5～10 月頃に鉱酸素化が顕
著となっており、11 月頃からDOが回復し始める。

（2）現地観測の概要

著者らは、1993年度より中海の流動および水質につ
いて、半年から1ヶ月程度の連続観測を行っている。本論文では、1996年度と1997年度に実施した観測結果を中心に考察をする。

1996/11/18-12/18（30日間）および1997/9/22-10/6
（15日間）に連続観測を行い、また、それぞれの期間中の
1996/11/29-11/30 と1997/10/3-10/4 には 2 潮汐間の
の観測を行った。中海全体の観測点を図-2(a)に、
米子湾の観測点を図-2(b)に示す。連続観測では、1996年度はSt.1～4, 6, 8～12（●印）の上層（水面下 1m）
と下層（湖底上 1m）で流向・流速、水温、塩分を
観測し、1997年度はSt.1～10（●印）の上層と下層で
流向・流速、水温、塩分およびDOを観測した。集中
観測では、流動、水質をより詳細に検討するために、ADCPやトラックポイントシステムを用いた潮汐観測
や塩分、DO など水質の鉛直分布の観測を行った。集
中観測の詳細を表-1に示す。また、中海湖心および米
子湾の両観測点（■印）においては年間を通じて水位および塩分に5点で塩分、水温、DO、酸素のモニタリングを行っている。なお、風向・風速、気圧のデータは中海湖心での観測値を採用した。

トラックポイントシステム（図-5）は、密度調節することにより任意の水深に浮遊させることができ可能な浮きの位置を経時的に追跡する装置で、水中に浮遊させ得音響発信器（トランススポンダ）、それからの信号を受信する音響受信器（ハイドロフォン）および信号（軌跡）を表示するコマンドディスプレイモジュールから構成されている。測定の原理は、観測ステーションに設置したハイドロフォンが一定周期で発する19 kHzのインターゲーションパルスを水中に浮遊させたトランススポンダが受けると同時に23～29kHzのうちで任意に設定した周波数の超音波を送り返し、それをハイドロフォンが受信するので、超音波の到達時間を入射角からトランススポンダの位置を求める。トランススポンダの周波数は個々に適当に設定でき、複数のトランススポンダを同時に放流・追跡することが可能である。なお、本装置は半径約1kmの範囲で十分な精度での観測が可能であることを確認している。

3. 気象変化に伴う湖内の流動特性

(1) 中海周辺における気圧配置と風の特性
日本周辺では、支配方の気圧配置の変化によって、季節は段階的に移り変わる。夏と冬は、季節の両極端で、それぞれ持続性のある安定した気圧配置を持つ。春と秋はこの二つの季節間の過渡期で、移動性高気圧と低気圧が周期的に到来する時期である。各季節で卓越する風は、気圧配置の影響を受けている。

図-6は、中海湖心における平均風速が8m/sを超える季節別の平均風速を、風向別に分類したものである。これは1986年12月から1997年11月までの11年間のデータを用いて算出した。年間を通じて、強風は東西軸方向に吹く傾向がある。これは、図-7に示すような周辺の地形の影響を受けて
<table>
<thead>
<tr>
<th>気圧</th>
<th>風向・風速</th>
<th>冬季(12-2月)</th>
<th>春季(3-5月)</th>
<th>夏季(6-8月)</th>
<th>秋季(9-11月)</th>
</tr>
</thead>
<tbody>
<tr>
<td>中〜高</td>
<td>強風(北東〜東風)</td>
<td>1.1%</td>
<td>3.9%</td>
<td>3.2%</td>
<td>5.7%</td>
</tr>
<tr>
<td></td>
<td>強風(北西〜南西風)</td>
<td>5.9%</td>
<td>6.4%</td>
<td>4.8%</td>
<td>1.6%</td>
</tr>
<tr>
<td></td>
<td>強風(その他の風向)</td>
<td>1.9%</td>
<td>1.3%</td>
<td>0.3%</td>
<td>0.5%</td>
</tr>
<tr>
<td></td>
<td>霧風(海陸風)</td>
<td>62.4%</td>
<td>67.4%</td>
<td>68.1%</td>
<td>68.1%</td>
</tr>
<tr>
<td>低</td>
<td>強風(北東〜東風)</td>
<td>0.3%</td>
<td>1.1%</td>
<td>1.4%</td>
<td>1.5%</td>
</tr>
<tr>
<td></td>
<td>強風(北西〜南西風)</td>
<td>9.5%</td>
<td>4.5%</td>
<td>2.8%</td>
<td>3.3%</td>
</tr>
<tr>
<td></td>
<td>強風(その他の風向)</td>
<td>0.8%</td>
<td>1.4%</td>
<td>1.1%</td>
<td>0.7%</td>
</tr>
<tr>
<td></td>
<td>霧風(海陸風)</td>
<td>18.3%</td>
<td>14.0%</td>
<td>16.9%</td>
<td>18.4%</td>
</tr>
</tbody>
</table>

※ 風速 8m/s 以上を強風とした。

経験的に得られる経時的な季節別の発生頻度が多い雨中強い傾向がある。中海周辺は、南部は内陸地で、北部は標高 200〜500m 程度の山々が連なる島根半島があり、南北方向は小高い山々が続いている。これに対して東西方向は、東部が低地の弓浜半島によって開かれて、西部も夷州湖につながっており、低地によって絞られている。これのために東西軸方向の風が卓越しやすいと考えられる。季節的には、季節風の影響で、撫養が最も高い強風の頻度が非常に多い。秋季は西からの強風の回数が多い、春季と秋季は、夏季と秋季の中間と言えるが、秋季は北東風が卓越しやすいことが特徴的である。

図-8 は、気圧によって分類された平均風速、風向の発生頻度を示したものである。気圧が高気温の時、中程度の時、低い時に区分し、さらに気圧が高い時は気圧変化が急激であることを考慮して、気圧低下時と気圧上昇（回復）時に分けた。気圧の区分方法は、気圧が各季節の支配的となる気圧によって季節的に変動してゆくため、各季節毎（3ヶ月毎）で二乗平均をとり、その平均値から ±3hPa で区分した。中心の内側にはそれそれぞれの気圧状態を示す全体に対する割合を示している。なお、これは 1994 年から 1997 年までの 4 年間のデータを用いて算出した。

気圧が中程度または高い状態にある時（図-8(a)、(d)) は合併計と全体の 10% 程度を占めている。これらは風の特徴は似ており、いずれも風速 6m/s 以上の風圧が多く、平圧な気象状態である。風向は北東〜東北東〜南西〜西が多い。これは、中海が沿岸部に位置していることから海陸風が卓越しやすいためと考えられる。しかしながら、これらの期間も時に比較的強い北東〜東北東からの風が生じることもある。これらは気圧が高いほど顕著となっている。気圧が低い時には全体の 20% 程度であるが、強風となる頻度は高い。特に、気圧回復時（図-8(b)）には強い西風が吹く。気圧低下時（図-8(a)）では、西風とともに北東からの強風が吹く頻度も高くなっている。

このような気圧配置によって支配的な作用が異なってくるが、気圧配置は季節的にそれぞれ特徴を持っているため、季節によって風の特徴も異なってくる。表-2 は、気圧と風向・風速が卓越しやすい組合せを取ることで、それぞれの発生頻度を季節別に示している。風の強弱の区分方法については、通例、風速 10m/s 以上も 13.9m/s 以上（ビューフォート風力段階 7）を強風とすることが多いが厳密な定義はなく、中海では吹送流が発生する重要な要因のひとつであり、後述するように風速 9m/s 程度で明瞭な吹送速流が生じる（図-15, 16）ことなどから、これは風の強弱は風速 8m/s で区分している。気圧が中程度が高い時に風速 8m/s 以下で海陸風が卓越するような時を含んだ各季節とも 60〜70% 程度である。また、風速 8m/s 以上は 10% 前後の頻度を生じるが、その時の風向は季節によって異なり、冬季は強い西風となりやすく、秋季は北東風となりやすい、一方、気圧が低く、強風となるのは全体の 5〜10% 程度である。その風向は冬季においてのみ西からの強風が支配的であるが、冬季以外は気圧低下時に北東からからの強風が吹き、やって西からのさらに強い風に移り変わる傾向にある。

以上のことから、中海において、生じやすい気圧と風向・風速の組合せは、①中程度から高い気圧で海陸風が卓越する平圧な気象状態、②中程度から高い気圧で時に起こる北東風からの強風時、③低気圧通過に伴って北東風（気圧低下時）から強い西風（気圧回復時）に切り変わる時、の三つに大まかことができる。これらは年間を通じて生じやすい、これらにさらに冬季は西風、秋季は北東風が強くなるという季節的な特徴が明確に示されている。中海ではこれら 3 通りの気圧と風向・風速の組合せによって流動場の特徴が決定付けられている。つまり、気圧配置の変化は、風の発生と、外海
＞中海～穴道湖間に水位差を生じさせることによって中海内の流動を引き起こすため、①では流動性が小さく停滞的で水質汚染が進みやすく、②や③では流動性が増し、混合や海水、河川水の流入によって水質環境が改善すると考えられる。

(2) 気象変化と湖内流動の関係

吹送流と流域間の水位差に起因した流出流は、いずれも気圧配置の変化に伴う流動であり、両者は相互に作用しながら複雑な流況を示す。そこで、まず両者の流況について個別に検討する。そして、3(1)で示した中海の特徴的な気圧と風向・風速の組合せにおいて起こる湖内流動について考察する。

a) 吹送流

図9は1997年の観測期間を含む1997年9月11-10日の(a)気圧、(b)水位、(c)中海湖水と米子湾との水位差、(d)風向・風速の経時変化を示す。この期間中は①台風が九州の南の海上で停滞し(9月14日)、その後東北、中国地方を経由した(9月17日)ため、16m/s程度の北東風が連続して吹いていた。台風通過時、②高気圧が中南西に移行し(10m/s)程度の北東風が連続して吹いていた高気圧と風変、③大陸からの低気圧が勢力を増しながら日本海を通過するのに伴い、西から南に傾斜回りに風向きが変えて وقد強風が吹き、水位上昇が生じた低気圧通過時、④低気圧通過後、再び気圧が回復し強風が吹かず海陸風が卓越した気象平穏時、の4つの特異的な気象状態が生じている。②～③は3(1)で述べたように、年間を通じてよく現れる気象状態である。

①は夏から秋にかけての特異的な気象である。③の気象平穏時には中海の流れ場に対し気象の影響は小さく天文湖の影響が卓越している場合とされる。なお、集中観測は④の期間中に行っている。

図10は、連続観測期間中の各観測点での上層、下層の流速ベクトルの経時変化を示している。各観測点で概ね上層と下層は流向きが反対で二層流となっている。

強風が吹いた②高気圧や風変と③低気圧接近時には流況は大きいが、海陸風が卓越した気象平穏時には流速は小さい。風向き(図9-4)に対する上層流の反応性は、大まかに言えば湖れ北岸側(大根島側、弓浜半島側)と南岸側(安来市側)で異なっている。南岸側のSt.4,7では風向と上層流が比較的対応しているが、北岸側のSt.2,3,5では反応性が低く、反対となることもある。これは、地形的な影響とともに、海水や淡水の流入の影響によるものと考えられ、大根島側(北岸側)では中浦水門と大橋川を結ぶような流れが吹送流に比べ卓越している。このように、必ずしも強風に対して湖全体で上層が順流となるのではなく、循環流が生じていると言える。

米子湾に注目すると、湾口では流況が複雑で、弓浜半島側(St.5)と安来市側(St.7)とで流況が異なることが多く、弓浜半島側(St.5)では中浦水門方向と、安来市側(St.7)では潮汐方向と、それぞれ結ぶような流れが発達しやすく、つまり、順流となりやすいこととなる。これに対し、湾内セロ(St.8)では、湾口形が細長いことから、風力により風向が変化して風向・風速の組合せによって起こる湖内流動について考察する。

b) 水域間の水位差に起因する流入流

中海が外海(美保湾)と穴道湖に接続した連絡系の水域であるため、気象変化は水位変化を変動させることにより美保湾～中海～穴道湖間に水位差を生じさせる。Ishitobi et al.を用いた、外海の水位変動に及ぼす天文湖、気象等の影響を検討し、天文湖と気圧変化の影響を受けた外海の水位変動は、ほとんど減衰することなく中海に伝わるが、穴道湖では大きく減衰した半日、日周期と、外海の水位変動の25時間平均値に従う4～8日程度の不規則な周期を持つ長周期変動が生じていることを明らかにした。著者らを含む検討を行い、①美保湾水位に対する中海湖水の位相差は約2時間である、②穴道湖水位では位相の遅れが約8時間である。外海の天文湖には追従できないが気圧変化に伴う水位変化の影響は現れる。③これらの結果、水位が数日に亘って変化し続ける場合には、中海と穴道湖間に数10cmの水位差が生じる(例えば、水位上昇期は相対的に穴道湖の方が高くなる)ことを明らかにしている。連絡水域間の水位差は、流入流を中海に生じさせることから以下でこのことについて考察する。

図11は1996年11月10日を基に11月25日におこる(a)気圧と中海湖水位、(b)中海湖水と穴道湖湖水の水位差、(c)中海湖水における塩分(深さ方向に5点；水面下0.5,1.0,3.5,5.5,6.0m)の経時変化と、11月18～11月25における(d)大橋川から中浦水門を結ぶSt.2.St.3.St.12の上、下層流速と下層塩分の経時変化を示す。なお、ここでは気圧の軸は水位との対応を見やすくするために逆になっている。気圧の変化に水位がよく追従している。また、St.12水深が3.5m程度と浅いため、下層として設置した水深上1mの点も密度躍層より上部に位置しており、上層(水面下1m)と同様な流速変化を示している。
図-9 気圧、水位、中海湖心と米子湾の水位差、風向・風速の経時変化（1997/9/11-10/6）

図-10 St.2〜5, 7, 8での上層、下層の流速ベクトルの経時変化（連続観測；1997/9/22-10/6）
気圧が上昇傾向にある場合について検討する。気圧が
上昇し始めると、数時間後に中海の水位が低下し始
めるが ((a))、宍道湖水位が中海の水位に対し約8時間
の位相差を持って変化しており、相対的に宍道湖水位
の方が高くなくなる ((b))。それに対応して宍道湖から大
橋川を通じて中海に流入を生じている ((d) St.12)。
このときの流速は10～20cm/s 程度である。その後、
破線の矢印で示すように約半日後に湖心付近 (St.3)、
さらに St.2 で流入の影響が顕れて、各点で塩分の低下
が見られる ((d))。また、中海湖心においても湖心
付近 (St.3) に流入の影響が顕れた時に、水面下0.5m
の塩分が急激に低下している ((c))。この時、水面下
0.5m に比べ水面下1.0m は塩分の低下が小さいこと
から淡水流入は水表面に密度流的に侵入していることが
わかる。
次に、気圧が低下傾向にある場合を検討する。例え
ば、11/20～11/21 にみられるような気圧低下は海水の
上昇を招き、中浦水門からの海水流入を起こしやすくな
る (d) St.2 から、上層が流出傾向、下層が
流入傾向にあり、海水は下層から流入していることが
わかる。図-11(d) St.2 に示されるように、天文湖によ
る半日または日周期が顕れやすく、天文湖と気圧低下
に伴う流入によって流動性が決定される。

以上のことから、低気圧通過の後など気圧が上昇傾向にある時には、産湖湖から中海上層へ、中海から美保湾への流れが生じやすく、反対に、低気圧接近中など気圧が低下し続ける時には、美保湾から中海下層へ、中海から産湖湖への流れが生じやすくなることがわかる。

c) 気象変化に伴う湖内流動

以上のまとめとして、強風が生じやすい気圧と風向・風速の組合せである、(a)気圧が中～高程度で北東～東からの強風が吹く時、(b)北東風からやがて強い西風となる低気圧接近時について、湖内流動の様子を示したものを図-12に示す。

(a)の場合、産湖湖の方が相対的に水位が高くなることにより、大橋川を通じて上層に淡水が流入しやすくなり、上層では大橋川から湖心、中浦水門への流れが生じるようになる。また、北東風による吹送流の流速は反対となり、その結果、循環流を生じやすくなり、流況はより複雑となる。

低気圧接近時（(b)）の場合、気圧低下時には外海から下層に海水が流入しやすくなるが、この時の北東～東からの風による吹送流は流れを弱めるように働く。しかしながら、東風は米子湾内の下層に湖心付近の水を流入させるように働くことから、湾内下層にDOを多く含む水が最も供給されやすい組合せと考えられる。一方、気圧が回復し始める頃になると、強い西風となり、また半日～1日程度の遅れを持って産湖湖から上層に流入も始まるので、西風が持つことは相乗的で湖内の流動性は高まることになる。

4. 流れ場と貧酸素水塊の挙動の関係

中海の下層に出現する貧酸素水塊の消長に関わるのば、生物化学的なDOの生産・消費とともに、物理的な拡散や混合である。前者は温度や日照など気象条件に影響され、後者の流動も、3.で述べたように、気象条件によって特徴付けられていることから、貧酸素水塊の挙動を明らかにするには、気象～流動との関係を検討する必要がある。流動現象のうち、下層DOに影響が大きいのはDOを供給する、鉛直方向での上層水との混合と、水平方向での外海水の流入である。上層水との混合が最も顕著なのは風による吹送密度流が生じた場合であり、一方、外海水の流入は天文潮のほかに低気圧接近に伴う海水面の上昇によって生じている。

そこで、貧酸素水塊の挙動と気象、流動との関係について、強風に伴う吹送流と低気圧接近に伴う外海水の流入に着目して検討する。併せて、流動性が小さい時はDO消費が進行しやすいと考えられることから、気象が平穏な時、つまり海陸風が支配的で、気圧変化も小さく天文潮の影響が卓越するような時についても検討する。

(1) 強風が貧酸素水塊に及ぼす影響

中海のような成層状態にある閉鎖性水域に強風が吹くと、吹送密度流が発生し、上層と下層の混合が生じ、これは貧酸素水塊の解消作用の一として重要である。そこで、ここでは強風と上下層の混合との関係について検討する。

図-9(d)に示すように 1997/9/11-10/6 には、①9/12-
図-13 強風時（1996/11/29-11/30）および弱風時（1997/10/3-10/4）における中浦水門～米子湾の密度界面振動

図-14 中海湖心における塩分の経時変化（1997/11-10/6）

この期間中，上層内である水面下 0.5m と 1.0m の塩分は常にほぼ等しい．それらの塩分は，台風通過（図 9/15-9/17）の前後では大きく異なり，台風通過後のほうが低い．これは，台風通過に伴って両道湖水面が中海水平よりも高くなり，両道湖から中海上層への流入が生じ，上層内での塩分が低下したことに，上層内が風の力によってよく混合されたことによる．これに対し，湖底上 1.0m と 0.5m（水面下 5.5m と 6.0m）では，台風通過以前は塩分がほぼ等しいが，通過後，両者間に 5% 程度の濃度差が生じている．しかし，台風通過後の 2 回にわたる風速 10～12m/s 程度の風（図-2/22-9/24，図2/27）では，この濃度差の変化は小さく，むしろ減少傾向にあり，下層内は一様化する傾向にある．

これらのことから，中海においては，密度層が非常にスケールで，風速 16m/s 程度の風によっても密度層が完全に破壊されることはないと考えられる．ただしご成層状態については，風速 10m/s 程度の風では，両者に応じては，維持されたままであるのに対し，16m/s 程度の風では，両道湖面に伴う密度界面の傾斜・振動が大きく，密度層は再び形成されるようになる．

密態密度が 9m/s 程度の風ではほぼ維持されている状況は，1996 年の集中観測で捉えられている。図-15
このような二層化した水域に風が作用した場合に起こる密度境界面の挙動や混合形態は、Spiegel・Imbergerによって分類、説明されている。これは気象データの範囲であるリチャードソン数 Reと湖沼形状を表すアスペクト比 L/h（L：吹送距離、h：水深）をパラメータとして、流れ形態を4つに区分（Regime A〜D）したものである。リチャードソン数は Re = Δρ/ρ g h/ρ u*²で、吹送流の摩擦速度は u* = (Cp ρ U*²)/ρ で定義される。Δρは上下層水の密度差、gは重力加速度、hは上層水深、ρは上層水の密度、ρ*は空気の密度、U*は水面以上10mの風速、Cpは抵抗係数（通常1.3×10⁻²）である。

中海での流れ形態は、風速16m/sの場合でも上下層の密度差が大きいため、Regime B (L/2h < Re < (L/2)²) に区分される。この流れ形態は、層面が傾斜することにより、内部静脈が誘発されて進行が促進されるが、その範囲は風上側に限られ、上下層の混合はあまり活発ではないとされている11)。これらを総合的に考えると、中海においては、上下層の密度差が大きいため、通常起こり得る吹送密度流では、密度境界層は破壊されるほどの上下層の混合は起こりにくく、上下層の混合は小さいといえる。

(2) 低気圧接近に伴う外海水流入が鰤酸素水塊に及ぼす影響

図17は、1997年度連続観測期間中におけるSt.1, 2, 5, 8, 10のそれぞれ上層、下層の中浦戸門へ〜米子湾軸方向の流れの経時変化を示す。

中浦戸門における流出状況は、上層では外海に出る傾向にあり、半日周期の潮汐変化と対応した流れになっている。これに対し、下層では、大陸からの低気圧が勢力を増しながら日本海を通過し、外海（美保湾）水位の上昇が生じた時に（低気圧接近時）に数日にわたる大規模な外海水の流入が始まっている。この影響は徐々に米子湾奥（St.10）まで達しているが、これは吹送密度流との相乗効果によってある。この時は低気圧接近時の典型的な気象パターンとなっており、9/25〜27は低気圧の移動に伴って風向きを東から時計回りに変化させつつ速度を増している（図9）。したがって湖内流れは、湖心方向（St.2, 3）の下層に流入した海水が、東〜南風による吹送密度流によって、効果的に米子湾内（St.7, 8）へ輸送されたと考えられる（図10）。その後、9/27以降に気圧が低下のピークを迎え、風向きも西風に変化しているため、米子湾下層へ流入もこの頃までとなっている。

その後の気象平穏時（6）に入ると、天気潮だけでなく外海水の流入は少なくなっている。ただし、気象平
図-17 連続観測期間中における各観測点の上層、下層での中浦水門〜米子湾軸方向の流速の経時変化（1997/22-10/6）
（下方向が鴨亀方向への流れを示す）

穏時においても10/3頃から再び中浦水門からの外海水の流入量が増加しているが、これは、気圧が再び低下し始め、外海水位が上昇傾向にあるためで、気圧変化が外海水流入に及ぼす影響が大きいことがわかる。気圧変化による海水流入は、低気圧接近時（図）では天文潮の周期性を乱す程度に流入しているが、気象平穏時（図）では半日周期の流出入を強調する程度で海水流入の影響が米子湾内まで及んでいない。

なお、St.1の流速が他の観測点に比べ非常に大きいが、これは中浦水門付近の幅が狭いためである。

（また、St.10（米子湾奥）では、St.5（湾口）や8（湾中央）に比べ流動性が高くなっているが、このことについては図3で述べる。）

図-18はSt.2、5、8、10における上層、下層のDOの経時変化を示している。対照のため、観測期間中の平均的な水温であった22℃における飽和DO濃度も加えている。上層では植物プランクトンの光合成のため過飽和となり、日中高く、夜間低下するという日周期で変動している。また、米子湾奥（St.10）でDOが最も高くなっていることから、湾奥ほど植物プランクトンが多く、栄養塩化状態があることがわかる。上層の空間的分布に対応して下層では常に米子湾奥ほど貧酸素化の傾向にある。このことからも湾奥ほど栄養塩化、水質汚濁化の傾向にあると判断できる。

下層DOの経時的な変化は気象条件によって影響を受けていていることがわかる。つまり、低気圧接近に伴う外海水の流入によって、米子湾に至るまでDOが上昇している。ただし、この時の米子湾奥（St.10）におけるDO上昇はわずかである。（その後の9/29に再び、比較的大きく上昇しているが、この原因については、図3で考察する。）

このDO上昇は9/27から9/28にかけてピーク保持しているが、これと湖心付近下層から米子湾下層への流入状況（図-10中St.4、St.7、St.8）がよく対応している。湖心近くに伴う米子湾下層への海水流入が湖心付近を経由して生じていることを示している。
(3) 気象平穏時における米子湾内の酸素水塊の挙動

図-17 から、気象平穏時（④）には、中浦水門下層からの外海水の流入量は少なく、流出入が周期的で天文潮が卓越している。米子湾口（St.5）の流出入も常に流速5cm/s以下で非常に少ない。したがって、気象平穏時には米子湾内と湾外との水交換は少なく、米子湾内水は停滞しやすいと考えられる。

このため、図-18 に示すように、気象平穏期（④）に入ると米子湾内（St.5, 8, 10）では DO は低下傾向にある。これは、天文潮では外海水が米子湾下層まで供給されず、生物・化学的に酸素消費が進んだものと考えられる。ただし、中浦水門に近い St.2 だけは他の観測点とは異なり上昇傾向にある。St.2 下層 DO の経時変化と図-9(b)の水位変動がほぼ同じ変化傾向を持っていることから、St.2 の付近までは天文潮による外海水の流入の影響を直接受けていると考えられる。

図-18 で得られている DO の経時変化は、それぞれ固定点で観測されたものである。そのため、DO 濃度の異なる水塊の去来によって DO は変動する。米子湾内（St.5, 8, 10）では、下層 DO は全体として減少傾向にあるが、St.10 での 9/29-30 の上昇や、St.8 での 10/2 頃の上昇は、異なる水塊の去来によるものと思われる。そこで、St.10 での 9/29-30 にかけての DO 上昇の原因について、流動との関連で考察する。

図-19 に St.10（米子湾奥）下層における DO, 塩分, 水温および過負荷流速の経時変化を示す。流動方向に流れる水塊（網掛けしている St.10 下層）では、低圧压近接的に外海水が流入し DO がわずかに回復した 9/27-28 の約 1 日後に再び DO が上昇している。この傾向は、すでに気象は穏やかで外海水の流入が少ない時期である。米子湾口（St.5）と湾中央（St.8）とも流速が小さいことから（図-17）、この DO の上昇は外海水の流入によるものではないことがわかる。流動が流動方向を示す期間（網掛けした期間）に、塩分の上昇と水温の低下が起こり、DO は上昇傾向にある。一方、湾外方向に流れるときはその反対となっている。したがって、低圧压近接に伴って流入した外海水の到達によって DO が上昇した 9/27-28 以後は、9/28 の湾外方向の流れで湾奥に存在してい
た比較的低 DO・低塩分・高温な水塊が St.10 に達し、次に 9/28 と 9/29 の湾奥方向への流入で再度、塩分上昇、温度低下がおこり、DO が上昇したものと考えられる。その後も流動の変化に応じて DO、塩分、水温は上昇と低下を繰り返しながら、DO は消費のために徐々に低下し、塩分と水温は拡散・混合作用で一定値に漸近している。

このように流動性が小さい気候平穏時において米子湾内で DO が急激に上昇（塩分上昇、水温低下）する現象は、特に St.10（米子湾奥）で顕著である。これは、図-17 からも判るように、気候平穏時においても、St.10（米子湾奥）では、St.5（湾口）や St.8（湾中央）に比べて流速が大きくなっているためと考えられる。この湾奥で湾口や湾中央より流動性が高いことについては、次のように考察される。図-20 は観測期間の中浦水門から米子湾奥に至る鉛直密度分布より求めた密度界面位置の縦断変化を表したものである。St.M～St.FC より湾奥部の界面振動は、湾口側と異なった界面振動となっている。これは、湾奥部にある二つの島と半島（図-2(b)参照）が湾幅を狭めていることによる。湾奥では界面の勾配が大きいため、これに伴う流動が起こっていると考えられる。しかし、界面振動に伴う流れについては、さらに検討する必要がある。

以上のことから、9/28 以後の DO、塩分、水温の上昇・下降の繰り返し、低気圧接近による外海水の大規模流入で湾中央部にできた湾奥部より高 DO・高塩分・低温な水塊が、その後の湾奥部での界面振動に伴う下層流れ（湾奥部で特に発達している）によって往復しながら徐々に湾奥方向に輸送されたことによる。

このように水塊の挙動が米子湾内の DO の分布に大きく影響していることから、貯酸素水塊の挙動を詳細に捉えるために、トラックポイントシステムを用い、潮流のラグランジュ的な流動観測を行った。トラックポイントシステムは著者らが開発したもので、物質輸送、つまり水塊の移動を追跡することができる。観測は気候平穏時（1997/10/3-10/4）に、上層に 1 基、下層に 3 基のトラックポイントを流速、移動軌跡の追跡を行った。

図-21 にトランスポンダの放流結果を示す。S と印したところがそれぞれの放流開始時点である。図中には 6m で区分した水深分布も示している。上層に放流したトランスポンダは島や半島の影響で移動経路が曲がられているが、下層の 3 基のトランスポンダはいずれも水深 6m 以上の谷地形に沿って移動している。このことから、貯酸素水塊が存在する湾奥下層では谷地形に沿う流れが卓越しており、貯酸素水塊はここを通りて移動していることがわかる。また、下層のトランスポンダは 3 基のうち No.1（図印）と No.2, 3（△, ◆印）では移動方向が反対となっている。さらに No.2, 3（△, ◆印）は 10/3 16:00～10/4 4:00 の間に満位の変化にかかわらず（図-9(b)）、湾口方向に流れ続けている。これらは以前に中海で観測されている天文潮に起因し、米子湾口付近が節、湾奥が節（第 2 モード）またはね（基本モード）となる内部セイシュウだけでなくは説明できない。しかしながら、これらの水塊の移動は、図-20 に示した湾奥部での界面振動で説明可能である。トランスポンダの移動方向と密度界面の勾配によって形成された流れは対応している。すなわち、トランスポンダが湾口方向に流れ続けた時の界面は常に湾口側に正の勾配で、この界面勾配によってトランス
ボンダが湾口方向に移動したものと考えられる。

次に、流動によるDOの減少速度について検討する。図-18に示すDOの経時変化は、固定点で観測されたもので、一つの水塊の移動に伴ってDOの変動は捉えていないが、貧酸素水塊の追跡によって水塊内のDOの減少過程を捉えることができる。10/3 16:00頃にSt.10付近にあった貧酸素水塊（トランスボンダ；△, ◆印）が10/4 4:00頃にSt.FC付近に移動している。図-22は、St.10およびSt.FC付近を貧酸素水塊（トランスボンダ；△, ◆印）で通過した時刻でのそれぞれのDOの鉛直分布を示す。これから求めたDOの減少速度は0.9mg/L/day程度である。この値は、図-18に示す固定点での経時変化（St.10で0.1mg/L/day程度）と比較するとやや大きいが、概略としては、この差が拡散や混合による貧酸素水塊へのDOの供給を表していると言える。

5．密度躍層と貧酸素水塊形成の関係

(1) 密度躍層と貧酸素水塊の挙動の関係

淡塩二成層をなす水域では、密度躍層が下層の流れを特徴づける一つの因子となり、水質的にも密度躍層を介して物質輸送が行なわれる。そこで、密度躍層と貧酸素水塊形成の関係について検討する。図-23は気象平穏時の集中観測期間（1997/10/3 10:00頃）における中浦水門付近から米子湾奥向に至るDOの縦断面を示す。DOの高い外海水が密度差的に下層に侵入している様子がわかる。図-24にはこの時のSt.8での塩分、水温、密度およびSt.10での密度の鉛直分布と、ADCPで計測した断面流速分布から求めたSt.8における平均流速の鉛直分布を示す。密度躍層の厚さは3mほどであった。この密度躍層を各水質項目の鉛直分布に照らし合わせてみると、それぞれ密度躍層内で特徴的な分布を形成していることがわかる。DOは、密度躍層内で急激に低下し躍層内の下部で無酸素層が形成されているが、下層に再びDOは増加している。水温はDOと対反の分布を持ち、密度躍層内の下部で最も高い値を示している。鉛直は密度躍層内で増加している。さらに躍層内で最も流速が小さくなっている。これらのことから、集中観測期における水質の鉛直構造は、密度躍層で上層、下層とは異なる水塊を有していると判断される。そこで、このような密度躍層内で特異な
水塊を形成した機構について考察する。

図-25はSt.8下層の水温の経時変化を示すが、低気圧接近時（③）の9/27午後に外海水流入の影響で急激に低下し、その後の気象平穏時（④）では21.7℃程度でほぼ一定に推移している。これと図-24の集中観測時（10/3）での水温の鉛直分布を比較すると、低気圧接近に伴って水温低下する前の9/27の下層水温と、低下後6日ほど経った10/3の密度躍層内の水温が22.5℃程度で一致していることがわかる。また、図-18から湾中央以南（St.8, 10）の下層では低気圧接近以前は無酸素状態にある。以上のことを考えると、躍層内の比較的温かい無酸素水塊の形成機構は次のように考えられる。夏季（低気圧接近前）に形成された躍層以深の温かく無酸素化した状態に対して、低気圧接近によって比較的冷たい外海水が、図-23のように、湖底に沿って米子湾内まで流込み、その結果、下層水塊は比較的冷たくDOを多く含んだ水塊に更新される。しかし、密度躍層内は流動性が小さいため、低気圧接近前の温かい無酸素水塊が残存しているものと考えられる。

また、このような躍層内での基準DOが低下する他の原因として、一般にデトリタスの沈降速度が非常に小さいことにより、デトリタスが沈降途中で分解を受けていることも考えられる。図-24に示すように、躍層内で過酸化が高くなり、ここでのデトリタスなどの集積の可能性が示唆される。このことについて以下に考察する。

（2）米子湾内の水質と下層DO消費要因の検討

躍層内でのデトリタスなどの集積は、その分解に伴うDO消費の可能性を示唆しており、底泥以外にも、デトリタスの沈降途中の分解によるDO消費が見込まれる。そこで、米子湾下層でのDO消費の内訳を検討する。

図-26に米子湾内St.8, St.M, St.10, St.YPの水面下1m、湖底上1mと0.5mでのChl-a, T-N, NH₄-N, PO₄-Pの観測4回の平均値を示す。平面的には湾奥ほど汚染レベルが高い。上下層はChl-aが高く無機栄養塩（NH₄-N, PO₄-P）が少ないと考えられ、下層は全く逆の傾向を持っている。したがって、上層は砂質泥、下層は粘性土で、無機栄養塩濃度が高い。これは底泥からの枯葉の続発的な溶出のためと考えられる。このことは底泥による高いDO消費性を裏付けている。

下層においてDOが増加する過程は、移流による他の水塊との混合を除けば、植物プランクトンの光合成によるDO生成とDOが高い上層水との混合である。しかし、光合成に関して、中海は透明度が低いため下層に光が届きにくく、また下層のChl-aもほとんど無い（図-26）ことから光合成はほとんど行われないと判断できる。また、上層水との混合も、躍層内の方が下層よりDOが低い（図-24）ことから、上層からの酸素供給はないといえる。したがって、下層では酸素消費のみが行われる。その内容はプランクトンの呼吸、有機物の好気的分解、無機化合物の酸化、底泥による消費が主に挙げられる。これまで各水域での生態系モデルが提案され、生態系物質循環の定式化が試みられている。特に中海においても物質循環に関する反応式とパラメータが検討されている。一般的に、プランクトンの呼吸や有機物の分解・無機化など生物学的な反応は、\[d[x]/dt = R * x (x: 現存量, R: 反応速度定数)\]のように一次反応で表現され、その反応速度定数は、\[R = R_{0} \cdot e^{-kT}\]（T：水温、R₉：水温70℃時の反応速度定数、k：温度定数）のように水温に関する指数関数で表現される。一方、底泥のDO消費も、主に沈降・堆積した有機物の分解・無機化によっており、底泥による直上水のDO消費も上述の反応式で表現される。
表-3 に中海において得られている水質パラメータを示す。これらは次のようにして求められている。調査は中海全域において行われ、湖水は年に通じて、水深6-9月に採取し、水中または間隙水中の水質変化を測定した結果をもとに整理している。底泥に関しては深さ0-5cm、以下10cm每に分割し検討している。プランクトンの呼吸や有機物分解など各反応によるDO消費速度をそれぞれの減少速度に換算係数（プランクトンや有機物が単位重量減少したときのDOの減少量比）を乗じて求めることができる。換算係数は、理論的にRichards（1965）による動物プランクトンの標準的な化成式である（CH₂O）₉₀(NH₃)₆H₃PO₄に関する化学平衡式

\[
(CH₂O)₉₀(NH₃)₆H₃PO₄ + 1380₂ \rightarrow 106CO₂ + 16HNO₃ + H₃PO₄ + 122H₂O
\]

を使用することができる。プランクトンの呼吸またはデトリタス（有機物）の分解・無機化に伴うDOの減少量比、（デトリタスに関しては主に植物プランクトンの死亡によって生じて組成変化は無く）と仮定して、分子量1380₂ = 4416、P = 31から、4416/31 = 142.5と計算される。また、植物プランクトンに含まれるおんとChl-aの重量比（植物プランクトン態リン/Chl-a）は、実測から0.8を求められている。底泥においては、泥深25cmにもって性質の変化が小さく有機物は非分解態に支配されると判断できたことから、非分解態有機物含有量を25cm以深の平均値から求め、泥深25cmまでの分解可能な有機物の含有量を全有機物から非分解態有機物を差し引いて求めてい る。この水質パラメータ（表-3）を用いて、図-26で得ている水質分析結果からDOの消費速度を検討する。プランクトン、デトリタスはすべての状態で計算した。また、デトリタス態リン濃度はT-Pから全溶解態リンとプランクトン態リン（Chl-a）に換算係数0.8を乗じて求めた。底泥によるDO消費は底泥中の有機物分解量に換算係数を乗じて求めるが、DO消費に関わるのは表面であるので、それ以深では嫌気的に有機物が分解されることを考慮して、泥深0-5cmを基に算出した。

また、NH₃-Nの硝化に代表される無機化合物の酸化は、下層のNH₄-N濃度が高い（図-26）ことからDO消費要因として検討する必要がある。清流を10月に中海湖水から底泥と下層水を採取し、硝化速度を測定した。底泥の単位面積あたりの硝化速度は9.15mgN/m²日で、下層水のみではDO濃度の大小に関わらず硝化反応は確認されていない。これは、底泥中の細菌数比して下層水中の細菌数が極めて少ないためと考えている。さらに、底泥による硝化に伴う下層の単位容積当たりのDO消費速度も、例えば下層が3mの場合、上記の底泥単位面積当たりのDO消費速度は0.014-0.023mgO₂/L/dayと算出され非常に小さく、このことからここでは無機化合物の酸化によるDO消費は無視している。

図-27に計算結果を示す。西湖ほど栄養塩濃度が高い（図-26）ため、DO消費速度は高くとなっています。St.10でのDO消費速度の積算値は、ほぼSt.10からSt.FCに移動した水塊内のDOから得た実測値（0.9mg/L/day）ともほぼ一致している。プランクトンの呼吸によるDO消耗が少ないのは下層でのプランクトン生産量が少ないことによる。デトリタスの分解に伴うDOの消耗は底泥によるものとほぼ同で、デトリタスの沈着時にでの分解による酸素消費も負酸素水塊の形成に大きく関与していると考えられる。ここでのこれらの算出について、水中におけるパラメーターは年間を通じてのデータを基にしているのに対し、
底泥に関するパラメータは夏季におけるデータを用い
て求めたものであるが、底泥による有機物分解と水中
でのデトリタス分解では温度定数が等しくなっている
（表-3）ことから、概算としては年間を通して言及でき
ると考えられる。なお、この DO 消費の計算に松栄
が東京湾の解析
に用いた水質パラメータを適用してもほぼ同様の結果
が得られた。そこで、米子湾と東京湾で得られた DO
消費速度を比較する。両水域とも下層の栄養塩濃度は
同程度であるため、デトリタスの分解に伴う DO 消費
速度には大きな差はない。一方、底泥単位面積当たり
の底泥による DO 消費速度は同程度に計算される。し
かし、米子湾は深水が小さくため、下層の単位容積
あたりで考えると DO 消費能力は米子湾の方が高まる。
つまり、米子湾の富栄養化の程度は東京湾と同程度とい
えるが、平均水深が 6.5m と浅いため、底泥の影響
が大きく、これが下層を酸素化しやすくする大きな
原因と考えられる。

6. おわりに

中海における気象～流れ場～水質環境の関係を明らか
にするために、気象、流れ、水質に関する詳細な現
地観測を行い、中海における気象の特徴、気象変化に
伴う流れ場と酸素酸水塊の挙動について検討し、以下の
結果を得た。
(1) 中海では、周辺気象の影響から、年間を通じて、東
西風方向の海陸風が卓越しやすい、強風が発生する
時の気圧と風向の組合せは、中程度から高い気圧で
時に起こる北東～東風と、低気圧近傍に伴って吹き
くる東北風（気圧低下時）から強い西風（気圧回復時）
に変わる 2 連が多い。
(2) 気圧配置に支配される風と水域間の水位差から湖内
の流れは特徴付けられる。気圧が中～高程度で北東
～東からの強風が吹く場合、穴道湖からの流入と吹
送流により循環流が生じやすく、低気圧接近時には
米子湾内下層に新鮮な水が供給されやすい。これ
は、気圧低下時に外海から下層への流入に加えて、
東風が米子湾内下層に流入を生じさせるためである。
気圧回復時になると強い西風と穴道湖からの流入が
重なり、湖内の流動性は高まる。
(3) 中海では、強風によって密度界面は振動し上下層の
混合も生じるが、密度躍層の安定度は高い、風速
16m/s 程度の風によっても躍層は完全に破壊される
ことはない。
(4) 天文潮では、外海水は、米子湾まで到達せず、米子
湾の下層では酸素消費が進む。一方、低気圧通過時
は外海水の流入が大規模で、その影響は湾奥にまで
達して一時的に酸素酸水塊状態が緩和される。
(5) 米子湾奥部では湾内に存在する半島と島の影響で、
潮全体の界面振動とは形態の異なる振動が生じてい
る。その結果、潮位変化とは無関係に、下層で湾口
方向に流れ続ける現象が見られる。この状態では、
湾の最奥部に存在していた最も酸素酸化した水塊が
移動し、海奥全体で溶存酸素濃度が低下する。
(6) 密度躍層は厚さが 3m ほどあり、その内部は動性
が小さい。そのため、低気圧通過時の溶存酸素を豊
富に含む外海水は下層へ流れ込み、躍層内には以前
の水塊が残存する。その結果、密度躍層の下層に相
対的に水温が高く無酸素な層が形成される。
(7) 気象安定時における、湾奥に存在した酸素酸水塊の
DO 消費速度は約 0.9mg/L/day で、その DO の消耗
要因のうち、デトリタス沈降中の分解に伴うものが
約半分の大きさを占めている。

参考文献
1) 日比野真史、福岡健二、池内幸司：季節および日々の気圧配
置の変化に伴う高気圧性気水湖内における流れの特性、土木学
会論文集, No.579-II-41, pp.93-103, 1997。
2) 福岡健二、鈴木範、川村信司、中村晃：中海における流れと酸
素酸水塊の発生、海岸工学論文集, 第 46 巻, pp.976-980, 1998。
3) 藤井智明、吉村利、三村敬、奥田敬造、横山真二：超音波ド
ッブラー流速プロファイラー (ADCP) を用いた河川水流域に
おける流速観測例、陸水学会誌, 第 55 巻, pp.16, 1994。
4) 福岡健二、松本直也、脇崎勇、山根英之：汽水湖における閉
鎖性水域の流速測定と測流モデルの適合性、水工学論文集, 第
40 巻, pp.243-248, 1995。
5) 福岡健二、中村隆、池内幸司、日比野真史：時間周期同時測位
装置を用いた閉鎖性汽水湖内の流れの観測と解析、海岸
工学論文集, 第 44 巻, pp.431-435, 1997。
6) 近藤邦男、清家雄、橋本性：汽水湖中における栄養塩類およ
び植物プランクトンの密度分布を支配する塩度躍層の役割、
陸水学会誌, 第 55 巻, pp.44-60, 1994。
7) 島根大学理学部化学科環境分析化学研究室：穴道湖・中海
水質観測月報 自主研究成果 (1990 年 5 月～1994 年 2 月,
pp.255-283, 1994。
8) 工業用水試験方法、JIS K 0101, 1991。
9) 吉野正敏、浅井隆、川村敬、絹野英之、前島雅雄編：
気象学・気象工学対訳、二六出版, pp.189-140, 1985。
10) Ishitobi, Y., Kamiya, H. and Itohara, H. : Tidal, 
Meteorological and Hydrological Effects on the Water
Level Variation in a Lagoon, Lake Shinji, Jpn. J. Limnol, 
Vol.54, No.1, pp.69-79, 1993。
11) Spiegel, R. H. and Imberger, J. : The classification of
FLOW AND ANOXIC WATER MASS BEHAVIOR ACCOMPANIED WITH THE CHANGE IN METEOROLOGICAL CONDITIONS IN LAKE NAKAUMI

Shoji FUKUOKA, Takeshi KUROKAWA, Tadashi HIBINO,
Atsushi SUZUKI, Takeshi NAKAMURA and Hiroshi UEHARA

Lake Nakaumi which is a brackish lake has strong pycnocline, so that dissolved oxygen in the bottom layer is often depleted. We studied the flow field which was caused by wind-driven current and inflow and outflow depending on change of atmospheric pressure. We also studied the effects of flow on the behavior of the anoxic water mass. The following results were obtained; (1) Seawater inflow and wind-driven current by approach of the low atmospheric pressure carry dissolved oxygen into bottom layer of Yonago Bay. (2) During the period of mild weather, internal wave in the back of Yonago Bay is different from that generated in the other area of the lake. The anoxic water mass moves from the back of the bay towards the center. (3) In the back of Yonago Bay, oxygen consumption due to decomposition of the detritus in the water column is nearly equal to that by bottom sediments.